UCITYLAB Project

The Masters of Regional and Urban Strategy (Stratégies territoriales et urbaines, STU) prepares students for professional practice in the field of urban policy and governance. A key component of year 1 is the module ‘Projet collectif’, in which students are exposed to real life scenarios. The module runs from October until June and provides an opportunity for students to engage with a variety of stakeholders in order to develop suitable proposals. Topics focus on the implementation of sustainability principles, public participation and social cohesion, in order to complement the theoretical content of the Master’s programme.

The STU Masters programme is a combination of theoretical background and exposure to professional practice. The group project module exemplifies that plurality of inputs, and challenges students to complete a research project that fulfils not only the academic requirements of their course, but also the expectations of professional practitioners.

The programme puts students into groups of four based on their interests and diverse backgrounds from their undergraduate studies. The topics of interest are submitted by the local stakeholders and are then chosen after an internal evaluation. A mentor is then chosen to overview each of the projects. This individual can be a representative of the university, industry or municipality, and the selection is based on their area of expertise and the proposed methodologies. An example of topics treated during the 2018-2019 year were:

  • Use of numerical data for the optimization of urban regeneration projects
  • Change of dynamics for municipalities and regions within the renewable energy markets through the use of urban policy
  • State of public participation in medium-to-large sized settlements

Students must attend scheduled sessions while also developing their line of investigation, collecting and analysing data, and defining proposals. Students must also allocate extra time in order to complete their in-depth research. This includes the arrangement of interviews with specialist practitioners, communication with stakeholders, field trips for data collection and observation, and assessment sessions with members of the municipality. At the end of their second semester, students must submit an extensive report that summarises their findings, research methodology and proposals, as well as make a public presentation of their concept.

DEVELOPED SKILLS AND COMPETENCES

This interdisciplinary approach gives students an opportunity to gain first-hand experience, build a network, receive expert feedback, expand their research skills, and pursue a Master’s degree. The design of the programme combines the traditional research structure with guidance and methodology suggested by representatives of the municipality and other practitioners. There were several noted impacts from this programme, which varied based on the stakeholder engaged.

For the Urban School and Sciences Po University:

  • A more robust connection between the theoretical background explained during the course and the reality of professional practice

For the students:

  • A set of soft skills that will facilitate their transition into the professional career
  • Increased technical capabilities in the use of professional software such as Geographical Information Systems (GIS) and statistical analysis
  • Potential employment opportunities for postgraduates

For the local community:

  • A good quality document that can inform future lines of investigation for municipalities
  • A new dimension for the municipality, with up to date information and relevant use of the available data
  • Potential recruitment considerations to strengthen the capabilities of the department
  • Innovative ideas and research paths instigating a conversation within the government agencies to implement change within their structure
  • Consideration of the allocation of resources to pursue solutions that were explored by student groups

The structure of the group project for their urban studies courses are already being replicated by other universities. The basic framework is easy to transfer to other contexts. However, the success of the project requires the accumulation of an extensive network of practitioners and collaborators. This one year module built into a larger Master’s programme can be a valuable reference point for similar initiatives in the future.

Main Partners:

Urban School   

Sciences Po University

  France Urbaine

Since 1995, the Illinois Institute of Technology (IIT) has been offering an experiential interdisciplinary learning format that has become part of university core curriculum that all undergraduates complete in order to graduate. The Interprofessional Projects Program (IPRO) prepares IIT undergraduate students for the practical challenges they will face in a changing workplace by emulating a cross-functional team environment.

Founded in 1890, IIT is a private, Ph.D.-granting research university that awards degrees in engineering, the sciences, architecture, law, design, psychology, humanities, and business. A strategic direction for IIT was established in 1994: in the face of competitive and financial weaknesses, reinvestments in the campus location and reinvention of the curriculum were initiated in order to support the distinctiveness of the undergraduate curriculum and attract students. The distinctiveness and resulting enhanced competitiveness of IIT undergraduate programs were enhanced by introducing the IPRO course as a new university-business collaboration initiative. It began as a pilot programme in 1995 and became a regular part of the undergraduate curriculum in 1999. The IPRO concept was inspired by feedback from companies like Boeing and from accreditation agencies who felt that engineering graduates generally needed greater university experience in teamwork and communication in order to be attractive candidates for corporate positions. In addition to the emphasis on teamwork and communication, the introduction of user-centred design thinking helped advance the program. With 20-200 students from various disciplines involved in the program per semester in the pilot phase, IPROs grew and developed to become an IIT general education requirement that now involves on the order of 100 Teams and 600 students participating each semester.

Semester-long projects based on contemporary open-ended problem-solving opportunities

IPRO course offers students experience in tackling a semester-long open-ended challenge as part of an interdisciplinary team. Project topics reflect the diversity of the workplace, offering a wide range of choices for students to apply knowledge from their disciplines. An important aspect of the IPRO Program is the involvement of workplace organizations that identify viable “real world” complex topics, and provide financial support and professional advice to IPRO teams throughout the semester. Approximately one-third of IPRO projects are financially-sponsored, with additional projects benefitting from informal collaboration with a range of business, non-profit, entrepreneurial and public sector organizations. The current (Spring 2020) IPRO model allows students to choose from two IPRO options.

In the IPRO Themed Workshop, the sponsor organization offers a challenge and then 50 to 100 students (divided into small interdisciplinary teams of 3 to 5 students) spend the semester developing either a working prototype or a rigorous research paper based on the challenge. The Spring 2020 topic areas include: Energy & Environmental Innovation, Frontiers of Technological Innovation, Public Safety Innovation, Urban Livability Innovation with a focus on water, STEM Education and Community, and Digital Service Design Workshop.

The Special Projects follow the “classic” IPRO format that has a single problem to explore through an integrated team approach with students organized in task groups that work toward a common goal – a rigorous research and development project. A small group of students (between 10 to 15) from various disciplines appropriate to the topic work closely with the faculty on all aspects of the project. In Spring 2020 semester, the projects include: Developing Remote Telescope for Use with IBM Watson Technology, NASA+SAElectric Vehicle Design, Designing for Nicaragua, Electrical & Energy Efficiency – Strategies for Sustainability, Power Over Ethernet: Lighting Cybersecurity Vulnerabilities and Capabilities Analysis, Engineering Life in the Service of Humanity: The IGEM Competition, Plastic Waste Mitigation, and Consulting Unplugged.

To provide an example of the students’ projects, a collection of IPRO students’ posters is available on IPRO website that demonstrates the topics addressed by IPRO teams. As water is covering over 70% of the earth and being essential to life, water is a topic that continues to be of interest to many industries and disciplines – particularly in the realm of innovation and design. Over the years IPRO projects have focused on water through a variety of contemporary lenses: accessibility, quality, health, transport, farming, urban planning, disaster mitigation and sustainability. Other examples of IPRO projects include e.g. architecture, humanities and engineering students collaborating on low-cost shelter solutions; or chemistry, business and law students working together to develop best practices in CO2-reducing technologies.

IPRO Requirements that Satisfy Accreditation and Develop Future Leaders

IPRO course has several learning objectives that are addressed in the process of grappling with a complex open-ended problem that requires collaboration by students from multiple disciplines:

• Teamwork: How to be an effective member of an interdisciplinary team, adding the expertise of your discipline and working on topics broader than your major field.

• Communication: How to effectively communicate the technical and non-technical aspects of a project to key stakeholders.

• Logically correct reasoning: The ability to generate a hypothesis using inductive logic (leveraging creativity and design methods), and then prove/disprove it using deductive logic (leveraging prototyping and scientific thinking).

• Project management: Deliver a desired, planned outcome with time and resource constraints.

• Ethics: How to act ethically when conducting research, working in teams, and creating solutions.

IPRO teamwork activitiestypically progress through five phases, from project definition, to research & analysis, concept development, prototyping & testing, and conveying the work. The teaching and learning process involves a number of activities and deliverables. For instance, IPRO teams are strongly encouraged to create a basic project plan that captures a team’s collective view about the organization and goals of the team, tasks and assignments, schedule and deliverables for the project, and a forecast of budget needs. IPRO teams are then required to present a midterm presentation about their project with at least three external professionals knowledgeable about the project topic to provide feedback to the students on their project. They are also required to create an exhibit for the IPRO Day event. This generally involves creating and printing posters as well as prototypes, videos and other means of communicating the story of a project and its outcomes or results. The teams give a final presentation about their projectandmay create a final report or other document that captures a team’s project work in a professional manner for distribution to sponsors, community partners and other stakeholders. The students also participate in the course evaluation process through a survey, which contributes to the assessment of the achievement of the IPRO learning goals and provide feedback to the IPRO Program that can lead to improvements in the experience. The students are graded on the quality and level of effort each team member demonstrates, the participation and functioning of the students as members of a team, and the overall performance of the team, which includes its effectiveness in collaboration, and achieving the project goals, deliverables and outcomes in a quality fashion.

At the end of the semester, IPRO teams participate in the IPRO Day event by showcasing their semester-long project. Professionals from the Chicago area, including a consistently large proportion of IIT alumni, serve as judges or are invited as guests to visit exhibits and offer IPRO teams an opportunity to share their methods and project outcomes. IPRO teams are organized by themes, with the top-ranked teams recognized at the IPRO Day closing ceremony.

IPRO impacts

The establishment of the IPRO course and its evolution over nearly 25 years has significantly improved the ability of IIT to attract students because it has been a sustainable, distinctive approach to experiential education that prepares students for the way that they will work in teams and on projects. The IPRO course has also had a significant impact on how IIT alumni engage with the university by offering topics for IPRO teams, sponsoring IPRO projects, serving as mentors and IPRO instructors. Engaging alumni in a sustainable fashion is a challenge all universities face, and the IPRO course offers a terrific way for alumni to remain involved and become inspired to support the university financially as well. IPRO has offered a significant platform for faculty to crystallize their ideas for research projects that can lead to external funding, as well as encourage students to participate in research in areas of faculty interest. It has also offered opportunities to faculty members to develop their coaching skills and to collaborate with faculty from other university departments.

IPRO has also created an impact on student employment and workplace validation, strengthening the resumes of IIT students seeking internships and career positions, and provided strong “talking points” in interviews with recruiters that underscore the practical IPRO experience they have gained and the unique user-centred design methods they have learned, which sets them apart from the competition for positions in industry and government. IIT students and graduatesare differentiated by their readiness and ability to manoeuvre in a complex work environment—skills that cannot be learned in a classroom alone. IPRO offers an environment to help students develop the discipline, leadership, and communication skills to succeed within a multidisciplinary group.

Since 1995, hundreds of organizations have participated in IPRO as sponsors and collaborators, including corporations of all sizes, entrepreneurs, non-profit organizations (museums, community organizations, etc.), government agencies, industry associations, philanthropic foundations, etc. Within IPRO, they become acquainted with students to identify recruiting prospects, they build relationships with research faculty, challenge a multidisciplinary team with a real and complex problem, and support the needs of non-profit community partners.


This blog article is written with reference to a good practice case study report prepared as part of the Erasmus+ University City Action Lab (UCITYLAB) Project.

ITS FACTORY COMMUNITY SEEKS SOLUTIONS FOR MOBILITY CHALLENGES THROUGH CLOSE CO-OPERATION OF THE PUBLIC AND PRIVATE SECTORS

ITS Factory is a public-private collaborative platform that aims to maximise synergies to develop innovative solutions in the field of Intelligent Transport Systems (ITS). Reflecting the complexity of modern urban challenges, the ecosystem facilitates communication between the public sector, academia and businesses.

The development of solutions through the ITS structure creates a two-way exchange, from which developers and researchers gain access to the available data from public sources, and the region benefits from the production of the latest concepts in urban mobility. For the student community, this collaborative environment creates an opportunity to gain exposure to the iterative process that informs technological creativity, and to become more aware of the social component that is attached to the development of solutions for the modern urban environment.

Modern mobility solutions, and the application of technology, relies heavily in the collection, storage and distribution of data. There is an increasing awareness of the potential for open data to unlock unlimited solutions to deliver the promise of smart communities and sustainable urban ecosystems. The main objective of the initiative is to generate a collaborative community specialized in the delivery of intelligent transport solutions. By attracting as many stakeholders as possible, ITS Factory aims to make Tampere an international pole in the field of mobility innovation.

COLLABORATIVE NETWORK

Together with the constantly expanding network of private actors, there are several institutions within public governance and education that participate in a more permanent role to provide infrastructure, data, and financial support. The different partners are allowed to develop their own ideas and execute specific projects within the realm of ITS. Some of the core activities include:

  • ITS Factory development
  • Commercialization and marketing activities
  • Facilitation for developers
  • Testing facilities
  • Interaction with end-user

The integration of ITS Factory within the Business Tampere structure allowed for a more streamlined co-creation process, resulting in the following impacts from this collaboration:

  • Commercialization of products and services
  • Creation of new research and development opportunities
  • Development of industry standards for the creation, exchange and management of data
  • Access to innovative transport solutions for the City of Tampere, the Tampere Region, and the citizenship
  • Associated societal impacts, including a more efficient transport network, reduction in emissions, optimization of costs, road safety, accessibility and public health

In order to reach the highest levels of innovation and co-production, ITS Factory aimed to create an ecosystem in which all stakeholders felt free to engage in research, collaboration and development of concepts. The flexibility of the creative model allows for extensive adaptability to the needs of developers and researchers. Due to the wide range of projects that can be integrated in the ITS ecosystem, the structure offers the possibility to benefit from the platform, including access to public data and real-life testing, to any type of venture. This perspective on stakeholder engagement, as well as the model developed, can be a valuable reference point for similar initiatives in the future.

Main Partners:

City of Tampere

Council of Tampere

Business Tampere

Tampere University

CREATIVE DESIGN SEMESTER AND UNISTARTAPP GIVE THE OPPORTUNITY FOR STUDENTS TO ACQUIRE THE FEATURES BY EMPLOYERS OF TODAY

The Warsaw Design Factory, located in the Warsaw University of Technology, aims to build an innovative university in order to develop skills in their students. With this initiative, the university aims to develop professional skills that are missing in formal university curricula; improve the interdisciplinarity achieved through multifaceted teams with students from different areas; but also improve the competences of their academic staff.

The Creative Design Semester is an additional semester targeted to 1st and 2nd degree students from various faculties of the Warsaw University of Technology to prepared them to the business world. One of the most important projects implemented jointly with the authorities of several cities in Poland was UniStartApp. This project combined the academic education, giving their participants ETCS points for this project, while remaining consistent with the startup creation methodology.

The UniStartApp was run through some defined stages and milestones assigned to each one of them: from the application idea, through competitor analysis, identification of user requirements, creation of the final product vision, together with supporting business model, requirement specification, summary of business-system analysis and final programming workshop.  This project begun in the early 2016 and was concluded in November of the same year, with the Gala event at Warsaw University of Technology, attended by all the project partners as well the representatives from the Ministries of Development and of Digitization, the Office of Electronic Communications, venture capital organizations, tech companies and the Polish Agency for Entrepreneurship Development.

DEVELOPED SKILLS AND COMPETENCES

Interdisciplinary teams, composed of students from the faculties of management, finance and IT worked on the concept and prototype of an application in line with the idea of ​​smart city. Qualified experts have supervised the group’s activities, leading to the creation of applications aiming at helping job seeking activities, organizing events, improving urban infrastructure, among others.

The UniStartApp project was a unique and innovative initiative preparing students to be the entrepreneurs of the future. Some of these competencies were:

  • Interdisciplinary communication within teams (particularly between programmers and not tech participants)
  • Learn how to work virtually with teams, improving cooperation capacity in a virtual environment – competency highly expected in a digitalized business environment
  • Widening horizons
  • T-shape people, which means that each student learned skills outside their training area
  • Entrepreneurship education

Traditional university structures are, yet, not ready for interdisciplinary and interorganizational cooperation that are at the core of future startup leaders’ formation process. Ecosystems like the one tested within UniStartApp project, can be a valuable reference point for similar initiatives in the future.


Main partners

Warsaw University of Technology

Warsaw Design Factory
Municipality of Warsaw

 

The design process of an open, collaborative and innovation lab is not just a methodological issue. On the contrary, the design process in itself can set a relevant precedent for future collaborative practices in the lab. The stakeholders that will be involved, the kind of relationships established among them, or the topics opened to public debate may have an impact on how the labs will function in the future. In the following article, we expose how the design process of UAB Open Labs, that took place from January to December 2018, was carried out.

Multi-stakeholder participative approach

The UAB Open Labs follow the trail of predecessor innovation spaces/labs such as makerspaces / fab labs and living labs and adopts their main aim: providing an open space for designing, prototyping and testing collaboratively. Therefore, participation and collaboration lay in the core of the UAB Open Labs fundamental principles. Precisely for that reason the design process of the UAB Open Labs was conceived and carried out in line with these principles, deploying a multi-stakeholder participatory approach and by implicating the final user in the design from the early beginning of the process. As described in a previous article, since 2013 the UAB had already setup four thematic strategic research communities (COREs) that had activated and engaged a great part of the academic community and thus could serve as the base for the co-creation process. The existence of these communities provided two identifiable advantages: i) a recognition and identification of needs and capacities of faculties and research groups based on the functioning of the COREs the previous years ii) an acquainted community that could be invited, engaged and make participant in this new endeavour that they would ultimately be the beneficiaries of.

A third factor to take into consideration was the existence of the UAB Smart Campus Living Lab (member of EnoLL since 2014) that had been functioning for some years already on an experimental basis. The creation of the Open Labs was ideated precisely as a pragmatic step for the further development of the Smart Campus Living Lab, where they  the Open Labs would serve as the operating branch of the Campus Living Lab, reinforcing its stature and capacities, and increasing its potential impact as an innovation and technology transfer tool while at the same time helping to impulse even further the collaboration potential within the COREs and the university community as a whole.


The first step in any participatory process is answering who should be invited to participate. In this regard, it should be noted that UAB Open Labs have some relevant differences with other labs that should be taken into account when answering this question. Unlike other open labs, UAB Open Labs are located inside a university campus; not in a neighbourhood nor in any other “real life” setting, so the community at stake was very specific and of high educational level.  Nonetheless, UAB Open Labs are not located inside the academic traditional closed labs scheme and proposed to go beyond that. These characteristics make UAB Open Labs a particular case situated in between universities and cities. In other words, UAB Open Labs are bringing academic labs and open labs together; establishing a new mixed space between them and defining a new way of doing things in an academic setting. This peculiarity determined which actors could get involved in its design process. In any open lab the Quadruple Helix principle establishes that companies, public administration, academia and citizens should be brought together to seek solutions for the urban challenges that concern them. Nevertheless, UAB Open Labs set up a quite more complex scenario, where any stakeholder linked to the university can become a possible user, as well as anyone outside university borders.

Therefore, the whole university community together with near local and regional administrations, citizens and other universities were called to participate in the design process; enabling multiple and diverse actors (students, professors, researchers, librarians, neighbours, etc.) to work together. After this wide call, at the end of the design process, approximately 137 people were involved,most of them from the UAB community but also relevant external participants. As the attendance data shows, the entangled map of stakeholders was a challenge itself, adding complexity to the process, but at the same time presented a great opportunity to work with and for the special diversity and talent present within the campus community.

Co-creation and collaborative methodologies

As was exposed in previous paragraphs, in line with Open Lab’s approach and aims, the design process was based on participative methodologies. It was conducted throughout three different stages, which had different aims and targets.

  • The first stage (January – March 2018) consisted of three co-design sessions, where the whole net of stakeholders where invited to participate. Each workshop had a concept that guided the objectives and participative techniques: “sympathy”, “inspiration” and “prototyping”. That is, during these workshops, stakeholders shared their interests and get to know each other. Moreover, the workshops allowed to collect suggestions to define the functions, aims, governance and spaces of the labs. Additionally, during this phase specialized visits to relevant Labs in the territory were realised with the academic community.
  • After these workshops, in the subsequent phase (May – December 2018) two commissions / working – action groups were created in order to bring the ideas and suggestions collected to reality. These commissions aimed to define clearly the characteristics of the future labs and advance with operational steps to make them reality. The First Commission worked on the regulations, governance, community and virtual platform; and the Second Commission oversaw the infrastructures, tools and machines, spaces and furniture. Both Commissions met periodically to plan and draw all the labs characteristics. Although the call was also open to the whole community, the Commissions were formed by stakeholders more closely related with the UAB Open Labs organization. The loss of participation during a co-design long process is one of the main challenges that this kind of experiences must face. Even so, it should be noted that a massive participation may hinder the decision-making process.
  • Finally, once the design was almost closed, two last co-creation meetings were celebrated to draw the physic composition of the labs (furniture, lights and other features). Both meetings took place in the space where the labs will be located, which facilitated the ideation exercise. In this case, the attendants were almost entirely from the university community.

Towards a conceptualization of the UAB Open Labs model

One of the singularities of the UAB Open Labs is precisely the starting point that we have just described: to a large extent, these Labs have been configured as a result of a participatory process of co-creation that was opened to the entire university community and which also involved other agents of the territory, both public and private. So, these labs, which are open spaces for co-design and co-creation, have been themselves co-designed and co-created; it is, itself, a singularity.

To what extent the future practices performed at the UAB Open Labs will be influenced by this singularity, or how the governance of the Labs will be impacted by the transversality and horizontality with which, from the beginning, the Labs were conceptualized, are just some of the many questions that still remain to be answered.

In fact, the first two physical spaces of the UAB Open Labs (Design Lab and Digital Lab) were inaugurated in November 2019 but the Lab model in itself is supposed to remain open, to accommodate non-traditional or singular ideas of value that could be incorporated. However, it is possible to identify two more characteristics that, together with the singularity mentioned earlier, are drawing a singular model of an Open Lab which will be more clearly defined during the functioning of the Labs from now on:

  • The first characteristic is that the UAB Open Labs have re-appropriated some conceptualizations that initially came from makerspaces and other manufacturing / tech community spaces. The Labs are conceptualized as open spaces for testing and prototyping, where innovation is fostered through co-creation and co-design practices which turn around the “ideas” and the “doing”. And, more specifically, “Doing-It-With-Others” (DIWO), since the starting point is that the potential of “making” is amplified when people meet with other people in spaces provided with helpful technologies to materialize projects but, above all, where people meet other people to collaborate, design and create together. Thus, on one hand, these spaces promote innovation based on co-creation and co-design practices (Anderson, 2012). And on the other hand, these practices turn around the concept of “doing”: manipulating, testing, experimenting and prototyping. In this sense, the prototype forms the base of the maker culture, as it is “doing” and “manipulating” how different attempts are given to answer the questions that people ask themselves (Corsín, 2014). The construction of significance around the object, then, goes beyond its consideration as a simple “good” or “product” (Dougherty, 2012), since the object´s creation process in itself has agency and value.
  • The second characteristic is that, conceptually, the UAB Open Labs model falls close to the description that Lhoste and Barbier (2016) placed on FabLabs when they analyzed them from the point of view of Oldenburg’s “third spaces” (1997): “a singular form of collective and distributed open innovation“, a new form of social organization in which the socio-technical practices performed are related to cooperation, collaborative generation of knowledge and collective innovation. As in the Labs studied by these authors, the UAB Open Labs accordingly try to generate symbolic open spaces that favor sociability, sharing and collaboration. For that reason, the physical locations of the LABs were chosen based on criteria such as visibility, proximity to flows and accessibility.  

Contributions of the model

As it was mentioned in the beginning, the point of departure for the UAB Open Labs was the thematic research communities (COREs) that had already been articulated within the university community and the context of the Smart Campus Living Lab.  While the thematic communities (COREs) ensured that a wide co-designand a co-creation participatory process could take place ,the Smart Campus Living Lab provided the base requirements and an operative frame for the Open Labs, as well as a testbed for the produced solutions. And, as we also stated, there is a clear transition from DIY (Do-It-Yourself) to DIWO (Do-It-With-Others) in the configuration and launching of the UAB Open Labs. Perhaps, as could be understood from the text of Lhoste and Barbier, one of the contributions of Open Labs to innovation could be found just in these two aspects: i) how the Lab has been put in place and  ii) how these conditions related to participation, collaboration and collective encounter, have been maintained. If so, the conceptual model of UAB Open Labs could notably contribute to achieve new comprehension of how Open Labs could contribute to social innovation and related processes, especially with relation to academic environments and communities.


Article written in collaboration with the research group Barcelona Science and Technology Studies Group (STS-b)

WEB

Open Labs

https://www.uab.cat/open-labs/

Barcelona Science and Technology Studies Group

https://barcelonasts.wordpress.com/

REFERENCES

Anderson, C. (2012). Makers: The New Industrial Revolution. London: Random House Business Books.

Corsín (2014). Introduction: The prototype: more than many and less than one. Journal of Cultural Economy 7 (4), 381-398

Dougherty, D. (2012). The maker movement. Innovations, 7(3), 11–14.


Lhoste, É. & Barbier, M. (2016). FabLabs: L’institutionnalisation de Tiers-Lieux du « soft hacking ». Revue d’anthropologie des connaissances, vol. 10, 1(1), 43-69.

Oldenburg, R. (1997). The great good place: cafés, coffee shops, community centers, beauty parlors, general stores, bars, hangouts, and how they get you through the day. New York, Marlowe & Company.

Degraded industrial regions – such as Zasavje in Slovenia with its former coal mines – are faced with social, economic and environmental challenges, such as unemployment, pollution and brain drain. To prosper, these areas need fresh ideas, bold visions and industrial restructuring, developed in partnership with local industry, community and citizens. The RUARDI project was a university-industry collaboration project involving an interdisciplinary student research team. It was conducted over a period of five months in 2015 and implemented within the Creative Path to Knowledge programme of the Public Scholarship, Development, Disability, and Maintenance Fund of the Republic of Slovenia.

RUARDI established cross-disciplinary and multi-stakeholder cooperation between different Faculties and research institutes of the University of Ljubljana, the city of Zagorje ob Savi (Slovenia), its local industry representatives (company Aereform), and local communities. The key aim was to conduct an interdisciplinary study which would provide recommendations for enlargement, optimization and integration of the existing city airport into the local industrial environment, community and everyday life of citizens. The long-term vision was to establish an aeronautic entrepreneurial hub for high-tech innovation and multiplication of regional social-economic development.

Aeroclub Zagorje ob Savi

SMALL RESEARCH PROJECTS THAT BRING VALUABLE EXPERIENCE

The Creative Path to Knowledge programme, supported by the Slovenian Ministry of Education, Science and Sports and the European Social Fund, enhances cooperation between higher education institutions and industry, businesses, or other non-academic organisations in short-term research & development projects. The participating students thus get the opportunity to work on real-life challenges, gaining practical experience, additional knowledge, as well as competences and skills that are increasingly important for entering the job market.

The current programme (2016-2020) value is 10.625.000,00 EUR and aims to involve at least 2700 undergraduate and graduate students, as well as 1400 non-academic experts. The programme co-finances projects that are carried out in groups of 4 to 8 students co-mentored by academic and industry/non-academic mentors, and encourages the exchange of knowledge, experience and good practices. The projects can last from 3 to 5 months. University and non-academic partners have to apply for funding – if successful, the academic mentors recruit a team of students to work on the project.

REVITALISING A DEGRADED URBAN AREA

Zasavje is one of the most affected Slovenian regions – in the time of economic crisis, the unemployment rate in the region has grown considerably. Traditional industrial sectors are labour intensive and characterized by high levels of manual work and low levels of automation. In the past years, the production was globally moving to areas with cheaper labour force. These events have further aggravated the economic situation in Zasavje, causing serious economic problems, i.e. low standard of living, low income, dependence on the social welfare system, long-term unemployment etc. These kinds of areas can benefit by introducing positive visions and by enhancing new solutions and development strategies incorporating local heritage and involving their citizens as co-creators.

Air mobility and aeronautic industry can present key integrators and drivers having positive effects on the development of environment, region, local community and entrepreneurship. The RUARDI project aimed to provide a holistic solution of expanding and integrating the existing city airport into the local community’s everyday life. Three non-academic mentors from industry and research (Aereform and IRI UL), four academic mentors (University of Ljubljana), and eight students from four different Faculties within the University of Ljubljana (Faculty of civil engineering, Faculty of architecture, Faculty of social sciences and Faculty of mathematics and physics) commenced work on the RUARDI project in January 2015.

The core of the project was the students’ research and development of solutions. Among other activities, the project team had to identify the relevant stakeholders and actors within the local community, develop the concept and mapping, conduct research and analysis, evaluate results and provide development recommendations, disseminate results and participate in multi-stakeholder meetings. During this process, the students acquired new competences and an elaborate vision of the airfield, while the collaboration between industry and university partners supported the exchange of knowledge and best practices. The interdisciplinary study resulted in a detailed, 153 pages long study report, written by the participating students and their academic and industry mentors, and has provided concrete recommendations that were later included in the city’s development strategy.

DEVELOPING SKILLS AND COMPETENCES

The learning outcomes were assessed for each student individually by the involved academic mentors, based on the activities undertaken by the student within the project and their performance. The individual assessments had to be included in the final project report, required by the funding programme. One of the most important outcomes of the collaborative project were the skills and competences developed by the involved students, including creative thinking; solving practical challenges with the solutions being feasible technically, socially, as well as financially; communication across disciplines and stakeholder groups; ability to set, formulate and implement a research process that has clear objectives and performance indicators; as well as organizational competences of working in an interdisciplinary team.

This blog article is written with reference to a good practice case study report prepared as part of the Erasmus+ University City Action Lab (UCITYLAB) Project.

MATOSINHOS LIVING LAB AIMS AT CREATING SMART, ZERO-CARBON EMISSIONS, RESILIENT, ACCESSIBLE, PARTICIPATORY AND CONNECTED NEIGHBOURHOOD

Matosinhos is a coastal city in the district of Porto. The living lab is located in a central area of the city surrounding the City Hall, where the main public services are centred, composed by several points with distinct physical, economic and social characteristics. It is an initiative of Municipality of Matosinhos, CEiiA (Centre of Engineering and Product Development), Porto Polytechnic, Metro do Porto, Efacec, among others. The overall objective of is to create a smart neighbourhood, as a low carbon space, resilient, accessible, participated and connected. It aims at testing technological solutions for low-carbon, energy efficient and reducing pollutant emissions. It acts in areas such as mobility and transport, buildings, environmental innovation and the promotion of circular economy, to decarbonize the city.

It is a project of co-creation and open innovation of products, services, software, hardware and low-carbon urban interventions, where municipalities, knowledge centres, companies, entrepreneurs and citizens interact.

Real context tests are performed for challenges like parking management, bike sharing, electrification of the fleet, traffic monitoring.

A CITIZEN-ENGAGEMENT EXPERIENCE

Matosinhos is preparing to become a living experience of what may be the cities of the future regarding the carbon intensity of daily activities. The citizens will be engaged in the creation and experimentation of cleaner and more intelligent technologies. The project also aims to promote entrepreneurship and the development of low-carbon business solutions.

In this sense, the role of the University was to develop a methodology to assess the impacts on the citizens. Indeed, the Polytechnics of Porto has created a technological tool to monitor social impact on two levels: customer perception of the use of the technologies offered by the living lab and the appropriation of the concept of “citizen centre” by them. This tool will be based on the use of the OLAP (Online Analytical Processing) cube, analysing the 3 perspectives presented of the BSC (Balanced SoreCard): customers’ perspective, learning perspective and economic-financial perspective.

MATOSINHOS LIVING LAB GOES BEYOND THE DECARBONIZATION OF THE CITY

Besides decarbonizing the city, the project’s goals include decreasing energy consumption, providing a test-bed for solutions that can be scaled to the whole city, to other cities and eventually to other countries, having a more comfortable and sustainable mobility, and promoting the use of renewable energies.

Several activities are being performed in order to achieve those goals, namely:

  • Development, testing and experimentation of innovative and integrated technological solutions, in real context, intersecting mobility, energy, buildings and connectivity
  • Promotion of strong user involvement, with the co-creation of solution
  • Evaluation of social adoption of these solutions
  • Measurement and evaluation of carbon emissions in real time powered by mobi.me (CEiiA’s mobility management platform)
  • Intelligent traffic monitoring in Matosinhos using radars and sensors
  • Placement in buses stops of real-time information monitors, managed by mobi.me, displaying the time, the atmospheric temperature and the waiting time for the incoming buses

Therefore, the project, apart from reducing the carbon emissions, intends to provide more quality in public spaces, more energetic efficiency, better life quality inside public building, improvement of road safety, increasing connectivity between citizen and all agents, and promotion entrepreneurship and new businesses creation related to low carbon solutions (development of new products and services). How? With auto sustainable lamps that measure carbon emissions, with pavement that reduces vehicle speed without drivers’ intervention, with a bike sharing system connected to the public transport system with a real time measurement of CO2 emissions spared, with an autonomous robot to support urban cleaning, among other activities and tools.

This blog article is written with reference to a good practice case study report prepared as part of the Erasmus+ University City Action Lab (UCITYLAB) Project.

MAIN PARTNERS

An initiative by the Chalmers University of Technology, Challenge Lab is a collaborative project that aims to reinforce students and the university as active part within local and regional ecosystems. It exists around the facilitation of direct conversation amongst stakeholders that, led by the students’ initiative, intend to identify contemporary issues and potential points of leverage for future action. This multidisciplinary cooperation tries to introduce systemic change in the university structure, bridging the gap between education and utilization.

Linked to their Master Thesis, participating in the Lab does not entail extra credits for its participants. Instead, it offers students the opportunity to develop their understanding of the complexity of societal challenges, applying their own vision for a sustainable future and engaging with industry, academics and municipalities to navigate the intricacies of their topic, and strengthen the accuracy of their line of questioning. Priority is given to the adequate definition of the issue, over the potential delivery of specific solutions.

Challenge Lab appeared in 2013 as a response to the resistance of societal actors to deeply engage in the conversation to solve modern urban issues. Inspired by a water management project completed in Barcelona, Prof. John Holmberg proposed the creation of an independent body within the university to promote the development of concepts in pursuit of sustainable development. This autonomy from the traditional university structure aims to combine expertise from a variety of disciplines in order to tackle complex issues such as urban mobility, waste production, housing or clean energy. One of the unique characteristics of Challenge Lab is the introduction of students as neutral, unthreatening intermediaries to drive the conversation, with the hope that business, industry, researchers and municipalities would play a more active role without the need to protect their own financial or intellectual stake. Innovation is enhanced by strict criteria of multidisciplinary research, where pairs of students allocated to specific topics are always from different academic backgrounds. This diversity aims to reflect the complexity of urban challenges, encouraging students to develop a collaborative mindset.

HOW IS THE MASTER’S THESIS COMPONENT STRUCTURED?

The Master Thesis Lab complements the standard Master Thesis module, and offers a co-creative environment for students to deliver a research project with real life impact. Each thesis is completed in pairs, accepted by the departments of Architecture and Civil Engineering; Engineering for Sustainable Development; Mechanical, Automation, Naval and Industrial Design Engineering; and Technology and Learning. It is also accepted by the Gothenburg School of Business, Economics and Law. This joint research method is considered to increase the quality of the thesis.

The semester prior to the beginning of the programme, students are introduced to fundamental sustainability principles, encouraging their own understanding of the topic and exposing them to concepts that will inform their thesis. This course, called ‘Leadership for sustainability transitions’, is part of the department of Space, Earth and Environment, and its completion increases the probability for students to be accepted to the Master Thesis Lab. Access to the programme is via open application in September-October, including a motivation statement.

After screening and a series of interviews, acceptance of candidates aims for a diverse range of students, with different background and with a flexible approach to modern urban issues.

HIGH IMPACT AND RECOGNITION OF THE PROGRAMME

The development of the Master Thesis Lab allows students to tackle modern issues while considering a wider range of perspectives. Thanks to the implementation of multidisciplinary approaches, and the focus on systems innovation, students develop a deeper understanding of the complexity of social challenges allowing for more inclusive and comprehensive research. This holistic model, and the iterative process with academics and practitioners help students deliver research that is relevant and with high level of applicability. Despite the focus of Challenge Lab being centred around the conversation between stakeholders, the consistent engagement of businesses and municipality creates an opportunity for the outcome of research projects to be developed and implemented.

With regards to the dialogue between researchers, industry and municipality, the more casual debate led by students facilitates an increase in the engagement by external stakeholders. Not being subject to the formal requirements of institutionalized exchange, representatives of businesses and governing bodies perceive the Lab as a place to discuss modern issues, support the student community and access an innovative source of ideas.

Challenge Lab received the Green Gown Award 2016, in the category of Student Engagement for Europe. These awards are organized by the Global Universities Partnership on Environment and Sustainability (GUPES), and supported by United Nations Environment Programme and the Environmental Association for Universities and Colleges (EAUC).

This blog article has been produced as part of the Challenge Lab Case Study Report of the UCITYLAB Project Case Study Collection.

Photo credit shutterstock.com

The dismal statistics indicates that almost half of Amsterdam adults feel lonely. The data collected by the municipal heath service GGD states that it comes down to 300 thousand lonely people in the Dutch capital, 80 thousand of whom feel extremely lonely. The tendency has stricken the elderly population as well. To alleviate the problem, the Urban Vitality Programme, one of the Research programmes of Amsterdam University of Applied Sciences (AUAS) has joined forces with Het AMSTELhuis, a residential facility for senior citizens, and launched ‘The AMSTELhuis’ Living Lab project in 2015. The project made social inclusion of elderly people, along with their activities and nutrition, a cornerstone of the Urban Vitality Programme and het Amstelhuis’ cooperative efforts.

Amsterdam: combatting loneliness and becoming an age-friendly city

Amsterdam is perceived to be one of the most inspiring and inclusive cities in Europe. Every year, it welcomes more and more expats from all over the world. Yet, the ever-rising population does not promote better socialization. Loneliness is getting recognized as a public health threat, and the city invests 1 million euros per year for tackling the issue of loneliness among its citizens. Apart from that, in 2015, Amsterdam joined the WHO Global Network for Age-friendly Cities and Communities to advance the well-being of elderly citizens through a number of programmes. With the AMSTELhuis project as a part of the Urban Vitality Programme, AUAS shares, a common ambition to organize the space for elderly citizens so that they can live an independent life that is meaningful and enriched with a variety of informal social activities.

Urban Vitality: improving senior citizens’ well-being

The activities carried out in the AMSTELhuis within the Urban Vitality research programme are majorly framed into students’ projects. The ongoing projects and research programmes are centred around three main themes: vitality, healthy nutrition and social inclusion.

Exercise Therapy students give weekly lessons in fall prevention. Prior that, a study on fall prediction was performed. The purpose of both activities is to predict falls, what will allow for a quicker action of the support staff in the future and make elderly people feel more confident in terms of their postural stability.

Healthy nutrition for the seniors is a frequent subject in research and advice. As part of the AUAS Food Lab, Nutrition & Dietetics students carry out research on the subject as well. Together with the residents’ club of the Amstelhuis, the Food Lab organises tasting events when residents can try sustainable vegetarian food. What is more, the Food Lab runs a project on marketing the Amstelhuis restaurant and making it more attractive for elderly people living in the neighbourhood.

For supporting Amstelhuis residents’ well-being, it is important they have a solid social network of co-residents, family and friends. The research done by Occupational Therapy students shows that some new residents find it difficult to connect with others when moving into the Amstelhuis. Students and researchers are trying to see what assistance is needed to help and strengthen the social network of new residents upon their arrival and further on.

The projects are being carried out with the support from the AMSTELhuis administration and supervised by the university researchers who guide and collaborate with their students in interdisciplinary teams.

Living Lab: why a success?

Efficient collaboration of the AUAS and the AMSTELhuis is ensured by several factors. First, both vision and ambition are shared and supported by the management, employees of the AMSTELhuis along with the researchers and students from AUAS. All involved parties have a common understanding that the AMSTELhuis residents, their comfort and safety are of primary concern. As confided by Ellen Budde, senior project manager of the AMSTELhuis Living Lab, a significantly important component of the programme success is related to the willingness to learn together and speak to one another respecting each other’s views, as well as to practice new behaviour expressed by all involved stakeholders, including residents themselves, their families, carers, etc. Undoubtfully, clear leadership and steering mechanisms bring more structure to the management processes. And the crowning element of the programme success is, undeniably, the applicability of the research results that improve the well-being of the AMSTELhuis residents.

Photo by Matthias Zomer from Pexels

This article has previously been published at uiin.org.

“Hub b30” is an open innovation network created to promote the collaboration, economic development and social cohesion of the territory in which the Autonomous University of Barcelona (UAB) is located.

The B30 territory is made up of 23 municipalities in a valley that is crossed by the AP7 (B30) highway that connects the different municipalities, with an area of 485km² and has more than one million inhabitants. Its uniqueness lies in the fact that it represents the main industrial agglomeration of Catalonia and Spain with almost 30,000 companies (providing occupation for almost 400,000 workers (1) located within its area.

In this sense, approximately 50 kilometers of the highway axis called B30 structure a territory of a great demographic, economic and social relevance.

In this territory a series of very singular circumstances come together that explains why it is internationally known as an innovative region (2). Not only does it have a high intensity of companies, but also a high presence of scientific-technical institutions. It hosts one of the most advanced light laboratories in the world, the Alba Synchrotron, as well as two major public universities: the UAB and the UPC. These capacities include research centers of the CSIC and IRTA; the UAB Research Park and the ESADE Creapolis business school. The possibilities of contribution of territory B30 to a socioeconomic development of Catalonia based on the knowledge economy are extraordinary precisely because of the potential for transfer of knowledge and technology that it integrates.
 
In this context, the strategy of the Universitat Autònoma de Barcelona is to play a role as a node of metropolitan knowledge. The consolidation of this paper depends, among other things, on the ability of the University to functionally integrate into the territory of which it is a part. But linking the university with the rest of the actors is not an easy task in the context of ​​the metropolitan area of ​​Barcelona, ​​characteristic of its variable geographies and changing boundaries in a reality that adopts urban models in the form of a network (3).

Born from the municipal partnership ÀmbitB30, initiative Hub b30 helps UAB to be linked locally and understands the logic of the various actors in the territory that hosts it. The systematic interaction it maintains, likewise, helps to determine the role of the university in the territorial network of centers and sub-centers to which it belongs.

The Hub b30 contributes to the UAB understanding the logic of the various actors in the B30 territory, to which it is linked, and to determine the role of the university in a complex network of companies, entities, centers and subcentres.

Born in 2018, the Hub B30 is conceived as a co-creation and co-creation ecosystem inspired by the 4 propellers, where companies, research and innovation agents, local administrations and citizens of the B30 have their place. It offers contacts, experts, resources and services to public and private organizations to help them detect and solve challenges in an efficient, innovative and competitive manner. It promotes access to knowledge about markets, financing, technology and patents; to equipment and scientific-technical infrastructures; to advisors in innovation and entrepreneurship; to research staff; and specialized training among others.

One of the first activities organized to promote interaction and collaboration among local stakeholder and boost knowledge transfer to the territory are the Hubb30 Innovation Brunches. These events are opportunities for networking between researchers, companies, entities and users and articulate collaborations around specific topics that combine technologies and diverse sectors.

In each of the announcements, a practical case of collaboration between diverse agents is presented to the public and in order to demonstrate successful examples of technological, social, product, process, marketing and business model innovations.

To date, the following twelve Innovation Brunches have been celebrated:

– Sensory at the Health Service
– Intelligent mobility solutions
– Smart Waste Management: Industrial Symbiosis
– New Pàckaging solutions for fresh foods
– Digitization and Exploitation of Data in the Public Sector
– Neuromarketing for Commerce
– Product Innovation in Cosmetics
– Big Data for the Healthcare Sector
– Smart Food
– Microbial Resistance
– Circular Water
– Gamification and Heritage

On each one of the topics, the UAB Research Park has produced an associated technological surveillance report that integrates a vision of trends and innovation around the thematic, as well as a related patent analysis. The various reports produced so far are available and can be consulted at the following URL:  https://hubb30.cat/en/innovation-brunchs. The 12 Technological Surveillance Reports of the Hub b30 Innovation Brunch can also be found at https://hubb30.cat/en/innovation-brunchs.

As in these sessions, the most disruptive technologies, trends and experts in the field are exposed, they generate a lot of interest among the business, social RDI and social fabric of the B30 territory. Consequently, they contribute to generating interactions that in the medium-longer term could become consolidated cooperation in research and innovation projects. The available data (4) confirm positive feedback from the participants that make up the quadruple propeller of field B30. They indicate that 68% of participants appreciate their satisfaction and efficiency between 3 and 4 points out of a total of 4.

The logic of Innovation Brunch is “top-down”, in the sense that the proposed topics take into account the characteristics of the territory and its opportunities for research, development and innovation from a strategic viewpoint. Since 2019 however and in order to complement the action of Hubb30 with a “bottom-up” logic, differentz events were organized “on demand” by and with the agents of the territory, the Innovation Mornings. The objective of this second typology of events is to work on problems, challenges and solutions utilizing Design thinking methodologies. This line of work has been initiated this year with the following two themes:

– Mental Health and Employment
– Business training needs

In essence, the Hub30 initiative is still young, but step by step recognition is being obtained both locally and supralocal and international level. Probably one of the most interesting success indicators of a hub is the quality and volume of the actors that have adhered to it or participated in the diverse activities.

Having reached the interest of RDI agents and local administrations for Hub b30, the company/industry membership phase is now underway.

Since the Hubb30 was initially created and impulsed by the Universitat Autònoma de Barcelona, the UAB Research Park, Eurecat and the B30 Area Association to promote innovation, further key RDI actors in the territory also decided to adhere to the HUB (UPC, Sincrotró Alba, ESADE Creapolis ) and the key local administrations (County Council, Innovation Agency of Catalonia ACCIÓ ). In 2020 it is expected to continue growing and to gain more diversity and efficiency with the adherence of the representatives of companies and industry of the territory B30 to the HUB.

Sources:

  • Associació Àmbit B30 (2015) Estratègies per a una millora en la competitivitat de la indústria a l’àmbit B30.
  • AMB (2018) Estratègia territorial de l’Àmbit B30 per al desenvolupament econòmic inclusiu i sostenible.
  • Arcos(2019) Universidad, territorio y desarrollo local. Un análisis de la Universidad Autónoma de Barcelona.
  • PRUAB (2019) Internal Document Elaboration.